An Annotated Bibliography

of

Selected Ground Water Management

Articles and Publications

Published by:

National Ground Water Association (NGWA)

NGWA State Association Affiliates

or

Associated State Societies of NGWA

March 2004
Revised January 2006

The simulation-optimization approach was used to identify ground water pumping strategies for control of the shallow water table in western San Joaquin Valley where shallow ground water threatens continued agriculture productivity. Results of the simulation-optimization model indicate that optimal pumping strategies are constrained by the existing distribution of wells between the semi-confined and confined zones of the aquifer, by the distribution of sediment types in the western valley, and by the historical distribution of pumping throughout the western valley.


The increasing demand for water has focused attention on improving groundwater management in California. But management of groundwater is complex. It involves court decisions, statutory law, overlying landowners' rights to groundwater, complex technical issues, and more than a century of political and institutional development and investment. The California Groundwater Management book covers many aspects of groundwater management, including information foundational to preparing groundwater management plans, groundwater law, technical issues, and basic groundwater concepts.


A management model was developed to determine optimal water allocation policies for hydraulically-connected time-variant surface and ground water supplies in a hypothetical system. The system involves a multi-purpose reservoir, a hydraulically connected stream and aquifer, agricultural plots, water supply and observation wells, and an artificial recharge zone. The model minimizes deviations from a set of rule curves defined for storage in the reservoir and along the stream course so as to consider possibilities for storage of excess water in wet periods and its distributions in subsequent dry periods.


In 2001, the Central Arizona Project began a project to identify a location or locations for a spreading basin-type recharge facility in the southeastern portion of the east Salt River Valley. Extensive pumping for irrigation and low rainfall resulted in ground water declines. An assessment of the study area included both technical and non-technical data.
to ascertain the key site characteristics and associated relative costs. This led to a ranking of possible sites for further analysis.


Texas Senate Bill 2 empowered local ground water conservation districts to regulate ground water withdrawals on a long-term, sustainable basis while protecting existing or historic uses. The bill also prohibited these districts from preventing exporting of ground water to remote places. Hudspeth District is working on a set of rules intended to create permits controlling the exporting of ground water.


In 1984, the southwest Florida Water Management District co-funded the Lake Manatee potable water aquifer storage and recovery project. At the time of the report’s presentation, there were 17 projects in various stages of development. Aquifer storage and recovery systems are used to store excess water during wet season to meet demands during the dry season.


Effective management of heavily stressed ground water basins is facilitated by comprehensive data monitoring networks. Coastal aquifers are often overdeveloped, leading to proactive management approaches. An internet-based common format for ground water data storage and retrieval would permit many levels of users to readily retrieve and effectively utilize the data.


State legislation is outlined showing the scope of ground water management plans which local governments may implement. The legislation also addresses coordination among local, state, and federal agencies.


Water supplies for Edson and surrounding areas are presently obtained from ground water sources. Increasing development pressures have prompted concerns over the long-term sustainability of the town’s ground water supply. A thorough hydrogeologic review and assessment were performed. An aquifer management plan for the next 10 years was developed.
As part of the district’s conjunctive use planning, it, along with the U.S. Geological Survey, has developed a four-layer MODFLOW model of the ground water basins. To determine the theoretical amount of available storage capacity remaining in these aquifers, the district imported MODFLOW data on aquifer elevations, storage coefficients, and ground water levels into its geographic information system (GIS). The GIS tools arcview and spatial analyst were used to perform the storage volume calculations. The analysis provided a layer by layer, cell by cell determination of aquifer available storage capacities.

The article discusses the importance of understanding water consumption in identifying water management options. While water use is sometimes cited, the author proposes that water consumption is the more difficult figure to obtain but one with greater significance to sustainable pumping from shallow, unconfined aquifers, regardless of the rate at which that water is pumped.

The water rights and water management issues of three cities are compared: Agadir, Morocco; Lima, Peru; and Los Angeles, California. The issues considered include each city’s approach to integrated water management, ground water sustainability, alternative sources of water, and water management authority.

The paper presents the challenge, goals, and general approach for quantifying and measuring ecosystem sustainability, including human components, from a hydrologic system perspective. The approach attempts to integrate individual factors and provide a scientifically credible model that is accessible for community planners and water managers.

Llewellyn, Dagmar. 2003. Applications of and Pitfalls to the Use of Ground Water in a Sustainable Water Plan—Examples from New Mexico. In proceedings of NGWA’s Southwest Focus Conference/Water Supply and Emerging Contaminants, 145-146
Ground water can be an important component of a sustainable conjunctive water use plan in arid regions. It can be used to balance supplies between wet and dry years and provide a mechanism for storage of water. Effective use of ground water systems requires a thorough understanding of the existing hydrologic system. This includes recognizing the
relationship between ground water flow and river flow plus other relationships. A system of legal restraints in New Mexico recognizes these relationships. The escalating pressure of population growth and other increased uses is causing problems with continuing sustainable plans.


This investigation consists of several major components including geohydrologic data collection, compilation, and monitoring; water use data collection and assessment; and regional water resource analysis. A regional ground water flow model will be developed and applied on a subregion in New Hampshire’s seacoast area to provide an integrated analysis of geologic information, new and historical hydrologic data, and complex regional water uses. This information will be available to agencies to help identify problems and evaluate future water use or availability in the study area.


Water rights which are recognized in California are summarized. Issues of water quality and quantity which have affected adjudicated basins in southern California are outlined. Watershed management options are proposed which could be applied to protect ground water in adjudicated basins.

Oliver, James M. 2003. Defining Aquifer Sustainability in an Agricultural Water Transfer—The Dell City, Texas Experience. NGWA’s Southwest Focus Conference/Water Supply and Emerging Contaminants, 144.

A water supply being considered by El Paso, Texas, is importing water from the Dell City Agricultural District. The problem of determining the sustainable yield of this karst aquifer system is being studied. The new trend in aquifer management policy uses a combination of sound hydrologic principles and monitored aquifer conditions to ensure the sustainability of the ground water resource.


Water tables in the Netherlands have fallen due to human intervention in the water regime. Factors responsible for this hydrological degradation are increased agricultural crop production, changes in land use, increased drainage, lowering of the drainage base, and increased ground water abstractions. The physically-based ground water and surface water model, SIMGRO, was used to predict the effect of these human interventions. The analysis was carried out in three different regions of the Netherlands and various scenarios were defined to represent the man-induced changes over the last 50 years. Variations in meteorological conditions over the last 50 years have a pronounced effect on the natural recharge, and the effect is greater than the changes caused by any of the human influences. The lowering of the drainage base causes the greatest change in ground water tables.

This study identifies the origin of shallow ground water that supports regionally unique plant and wildlife habitats in a riparian and reservoir-fringe system using isotopic and chemical procedures. Results show that stream flow is the more prominent source of local shallow ground water during the wet season, but that regional ground water is the more prominent source during the dry seasons. The variation in the source and dynamics of shallow ground water recharge must be considered if the management of shallow ground water and associated plant and wildlife habitat is to be successful.


North Carolina designated an area of the coastal plain as a regulated aquifer requiring permits for withdrawals. MODFLOW was used to model a 1300 square mile area to estimate effects of a mine advance and a proposed wellfield. Regional scale ground water flow models provide information on potential effects on the aquifer and assess impacts as required in the permitting process.


Discussion of why safe yield is not sustainable yield and should not be used in setting water policy. Discharge from ground water systems is ignored when looking at safe yield as it is traditionally defined.


Current water use, projected demands, and issues to consider are recapped. Potential developments that could affect or impact the future are outlined. The role for scientists and engineers in public policy debate on water is discussed.


Instead of scientists attempting to work with the concept of sustainability of water resources, the suggested concept should be renewability. This is defined by the author as the natural average amount of water that enters a watershed each year.
The National Ground Water Association is a not-for-profit professional society and trade association for the ground water industry. Our 15,000 members from all 50 states include some of the country’s leading public and private sector ground water scientists, engineers, water well contractors, manufacturers, and suppliers of ground water related products and services.

For additional information contact Washington lobbyist, Cartier Esham, at Dutko Worldwide (202 484.4884; cartier.esham@dutkoworldwide.com) or NGWA Government Affairs Director Christine Reimer at 800 551.7379, ext. 560, creimer@ngwa.org.

Updated: California Groundwater Management publication available in print. January 30, 2006