Hydrofracturing in Water Wells vs. Hydraulic Fracturing in Oil and Gas Wells

Issue

Hydrofracturing of water wells is different than hydraulic fracturing for oil and gas production. While there are some similarities there are many differences, and the two should not be confused with each other.

Our concern now is policymakers may unknowingly link the two practices together under regulations intended to govern the oil and gas industry. Because of their marked differences, please consider a special exemption for water well hydrofracturing. We’d welcome the opportunity to work with your office on how to address that exemption legislatively.

Background

Hydraulic fracturing began as a process for the stimulation of oil and gas wells, and was first used in the United States in 1947. The procedure was deployed commercially in 1949, and because of its success in increasing production from oil wells, was quickly adopted industrywide. It is now practiced in thousands of oil and gas wells annually.

Hydraulic fracturing is a method used to create fractures that extend from a borehole into rock formations, which are typically maintained by a proppant, a material such as grains of sand or other inert substance, which prevents the fractures from closing.
The basic concept of hydraulic fracturing was introduced, modified, and adapted for the water well industry in the late ’60s and early ’70s. The hydrofracturing of water wells has proven beneficial in areas where water is difficult to locate or extract from underground. Alternatives to hydrofracturing available for homeowners in such locations include having multiple wells drilled in hopes of locating a more productive source of supply, or hauling in water.

The number of water wells that are hydrofractured annually varies widely among states. For some states, given the geology and groundwater occurrence, no water well hydrofracturing is necessary, e.g., Illinois, South Carolina, South Dakota. In other areas, e.g., Michigan, Tennessee, Washington (state), state agencies report an average of 20 to 60 water wells developed via hydrofracturing annually. Still other states report that even higher numbers of water well owners depend on hydrofracturing to obtain adequate supplies, e.g., Minnesota (150), Wisconsin (300), New Hampshire (543 or about 11 percent of wells drilled are hydrofracked).
Key Differences

The following table identifies some of the key differences between water well hydrofracturing and hydraulic fracturing of oil and gas wells.

<table>
<thead>
<tr>
<th></th>
<th>Groundwater Industry</th>
<th>Oil and Gas Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemicals</td>
<td>Chemicals are seldom needed, but when used, they are third-party certified for use in potable water.</td>
<td>Chemicals such as polycyclic aromatic hydrocarbons, methanol, formaldehyde, ethylene glycol, glycol ethers, hydrochloric acid, and sodium hydroxide.</td>
</tr>
<tr>
<td>Footprint</td>
<td>Footprint of 0.018 acres</td>
<td>Footprint up to 5.5 acres or 300 times larger</td>
</tr>
<tr>
<td>Pressures used</td>
<td>Up to 3,000 psi</td>
<td>Up to 13,500 psi</td>
</tr>
<tr>
<td>Amount of water used</td>
<td>1,000 gallons to 18,000 gallons</td>
<td>500,000 gallons to 8 million gallons</td>
</tr>
<tr>
<td>Typical use</td>
<td>To increase the production of potable water for homes and communities</td>
<td>To increase the flow of oil and gas</td>
</tr>
<tr>
<td>Use of proppants</td>
<td>No proppants are needed.</td>
<td>Proppants are needed.</td>
</tr>
<tr>
<td>Condition of fracture after procedure</td>
<td>Fracture remains open.</td>
<td>Proppants are used to maintain existing and newly created fractures.</td>
</tr>
</tbody>
</table>

Contact

National Ground Water Association
601 Dempsey Road
Westerville, OH 43081
(800) 551-7379
government@ngwa.org

Dates

NGWA wishes to acknowledge the following contributors to this position paper:
Lynn Bartholomew, Northwest Hydro-Fracturing
James Garry, New York Department of Environmental Conservation
David Haupt, Haupt Well and Pump Co.
Sean Kyle, Northeast Water Production
J.P. Nicot, University of Texas
Fred Paillet, University of Arkansas
Timothy K. Parker, PG, Parker Groundwater
Jill Van Dyke, Environmental Consulting and Technology
Christine Vilardi, STV Environmental
Michael West, Baroid Industrial Drilling Products
David Wunsch, New Hampshire Geological Survey

The National Ground Water Association is a not-for-profit professional society and trade association for the global groundwater industry. Our members around the world include leading public and private sector groundwater scientists, engineers, water well system professionals, manufacturers, and suppliers of groundwater-related products and services. The Association’s vision is to be the leading groundwater association advocating for responsible development, management, and use of water.